Experimental Design to Improve Topic Analysis Based Summarization
نویسندگان
چکیده
We use efficient screening experiments to investigate and improve topic analysis based multi-document extractive summarization. In our summarization process, topic analysis determines the weighted topic content vectors that characterize the corpora, and then Jensen-Shannon divergence extracts sentences that best match the weighted content vectors to assemble the summaries. We use screening experiments to investigate several control parameters in this process, gaining better understanding of and improving the topic analysis based summarization process.
منابع مشابه
Query-focused Multi-Document Summarization: Combining a Topic Model with Graph-based Semi-supervised Learning
Graph-based learning algorithms have been shown to be an effective approach for query-focused multi-document summarization (MDS). In this paper, we extend the standard graph ranking algorithm by proposing a two-layer (i.e. sentence layer and topic layer) graph-based semi-supervised learning approach based on topic modeling techniques. Experimental results on TAC datasets show that by considerin...
متن کاملEXTRACTION-BASED TEXT SUMMARIZATION USING FUZZY ANALYSIS
Due to the explosive growth of the world-wide web, automatictext summarization has become an essential tool for web users. In this paperwe present a novel approach for creating text summaries. Using fuzzy logicand word-net, our model extracts the most relevant sentences from an originaldocument. The approach utilizes fuzzy measures and inference on theextracted textual information from the docu...
متن کاملA Framework for Summarization of Multi-topic Web Sites
Web site summarization, which identifies the essential content covered in a given Web site, plays an important role in Web information management. However, straightforward summarization of an entire Web site with diverse content may lead to a summary heavily biased to the dominant topics covered in the target Web site. In this paper, we propose a two-stage framework for effective summarization ...
متن کاملGraph Hybrid Summarization
One solution to process and analysis of massive graphs is summarization. Generating a high quality summary is the main challenge of graph summarization. In the aims of generating a summary with a better quality for a given attributed graph, both structural and attribute similarities must be considered. There are two measures named density and entropy to evaluate the quality of structural and at...
متن کاملText Summarization Using Cuckoo Search Optimization Algorithm
Today, with rapid growth of the World Wide Web and creation of Internet sites and online text resources, text summarization issue is highly attended by various researchers. Extractive-based text summarization is an important summarization method which is included of selecting the top representative sentences from the input document. When, we are facing into large data volume documents, the extr...
متن کامل